Performance of TCP over a link using Fair Queueing

Extended abstract

Jordan AUGE, James ROBERTS

{jordan.auge, james.roberts}@francetelecom.com

1 Introduction

Two recent fields of research will certainly have a
major impact on the future performance of the Internet.
These are firstly, the evaluation of the buffer size requi-
red to ensure fair, stable and efficient sharing of link
bandwith and secondly, the proposition of new conges-
tion control algorithms, more suitable for increasingly
high link speeds than current version of TCP. In this pa-
per, we re-examine the arguments developed in the light
of the complementary proposition to use per-flow fair
scheduling in router queues.

2 Buffer sizing

Despite its apparent simplicity, buffer dimensioning
is not a well understood topic. A simple rule based on
the operation of TCP Reno recommends a buffer size
equal to the Bandwith Delay Product. Since link capa-
city is currently around 10GB and the delay used for the
computation close to 250ms, buffer sizes are attaining
the limit of feasibility. Several propositions have recently
appeared in the litterature. Appenzeller et al. [1] have
made a big step in favour of a drastic reduction of the
buffer size in the order of the square root of the number
of flows in presence. Raina and Wischik [2] argue for a
fixed buffer size of 20 packets for stability reasons. Fi-
nally Enachescu [3] propose a dimensioning proportional
to the maximum TCP window size.

3 High speed TCP versions

Until recently, the TCP congestion control has suc-
ceeded in making the network stable and efficient. Ho-
wever, as networks with high speed and long delays are
more and more present, this protocol has revealed its
limits and doesn’t allow an efficient use of the available
bandwith. Such proposals as HSTCP, FastTCP and Sca-
lable TCP are among the most popular; [4] provides
interesting experimental results. In this paper we will
only consider HSTCP [5] which has been extensively stu-
died. The idea behind this protocol is to modify the ini-
tial AIMD algorithm with dictates the evolution of the
congestion window to make it more tolerant to the losses
at high rates.

4 Fair queueing

Fair queueing allows the network to give a fair share
of the available bandwith to each user without relying

on their cooperation. Associated with the longest queue
drop policy, it provides very good performance. Its fair-
ness and protection properties may also act in favour
of the introduction of new and more efficient transport
protocols, since there is no more the need to be TCP-
friendly. Finally it can be useful to realize implicit service
differenciation as shown in [6].

As long as link load is not higher than 90%, traffic
models predict that the number of bottlenecked flows in
progress is less than 100 with high probability. Thus, fair
queueing is scalable since only a small number of flows
need to be scheduled, independently of the link rate. It
is also feasible since the maximum number of flows is
around 500 at loads below 90% [7] [8].

5 Traffic on a backbone link

An essential characteristic of a data flow is its peak
rate. Some flows to be scheduled are bottlenecked at a
link in that they could attain a higher rate if the link in
question had a greater capacity. Most flows in progress
however are not bottlenecked. Their rate is limited by
other constraints on their path (access links, notably) to
a peak value less than the fair rate offered by the link.
In order to get a proper evaluation of congestion control,
we must account for a realistic traffic mix.

6 Performance results

We studied the performance of TCP flows over a
fair queueing link by simulation. The topology used is a
50Mbps bottlenecked link, with a 100ms RTT. Initially,
non-bottlenecked flows are represented with Poisson ar-
rivals of TCP flows with 1Mbps peak rate. Then they
are replaced with a Poisson stream of packets which has
been proved to have the same characterictics. One, two or
four permanent high rate flows (TCP Reno or HSTCP)
are sharing the available capacity, in order to account
for the most probable situations. We used several buf-
fer sizes between 20 packets (the value recommended in
[2]) and Bandwith Delay Product. The scheduling is ei-
ther FIFO with DropTail or Fair Queueing with Longest
Queue Drop. We present here the key results arising from
our simulations.

By dropping the first packet in the flow which has
the longest backlog, fair queueing ensures the protection
of the non-bottlenecked flows which cannot reach their
fair rate. Eliminating the losses and reducing the RTT
if the flows is a good guarantee of quality of service,
particularly when this background traffic includes real
time flows, and when the buffer is large.



We should notice that the presence of background
traffic highly modifies the closed-loop congestion control
algorithm of TCP. A TCP connection on a bufferless link
can attain 75% utilization. The larger the buffer, the hi-
gher the utilization. However, the throughput of the flow
falls drastically below 50% of the available capacity as
soon as we inject some background traffic : there is a
non null probability that the buffer is saturated when
one packet from the TCP connection arrives. Thus a 20
packets buffer seems not sufficient to ensure the perfor-
mance of high speed TCP flows, as they are not able to
sustain high rates and they exit their slow start phase
prematurely. A larger buffer around a hundred packets
provides good performance.

We notice an improvement when the number of mul-
tiplexed bottlenecked flows increases, all the more so
as they become unsynchronized. Yet our model predicts
that this number is reduced to a few units with high
probability. Note that fair queueing has the property to
desynchronize the losses and thus the behaviour of the
flows.

Even if HSTCP behaves very poorly with FIFO and
very small buffers, it brings gain in utilization even on
such low capacities as 50Mbps. It is however responsible
for higher loss rates for background flows, and appears
quite unfair.

When the buffer is sufficiently sized, fair queueing
is effective : each flow obtain its fair share, even with
different protocols. Of course, less efficient protocols as
standard TCP will have a slightly inferior throughput
than HSTCP because of the drastic decrease of its conges-
tion windows when a loss occurs. Fair queueing is also
necessary to protect established connections from the ef-
fects of slow starts of other flows.

Finally, fair queueing regulates the arrivals of the pa-
ckets inside a flow. It results in smoother evolutions of
the queue, which minimizes its probability of overflow.
Thus the flow can keep a higher window and have a bet-
ter rate when this doesn’t mean a larger RTT.

7 Conclusion

Those preliminary results are very encouraging in or-
der to introduce fair queueing into the network. Further
research will provide a theoretical basis for these state-
ments, and investigate the possibility to use techniques
such as packet pair [9] to probe the fair rate.

Références

[1] G. Appenzeller, I. Keslassy, N. McKeown, Sizing
Router Buffers, Proceeding of ACM SIGCOMM '04,
Portland, Oregon, September 2004.

[2] G. Raina, D. Wischik, Buffer sizes for large multi-
plexers : TCP queueing theory and instability ana-
lysis NGI 2005

[3] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown,
T. Roughgarden, Part III : Routers with Very Small
Buffers, ACM/SIGCOMM CCR 2005.

[4] Y-T. Li, D. Leith, R.N. Shorten, Experimental Eva-
luation of TCP Protocols for High-Speed Networks,

[5] S. Floyd, HighSpeed TCP for Large Congestion
Windows, IETF Internet Draft

[6] A. Kortebi, S. Oueslati and J. Roberts, Cross-
protect : implicit service differentiation and ad-
mission control, IEEE HPSR 2004, Phoenix, USA,
April 2004.

[7] A. Kortebi, L. Muscariello, S. Oueslati and J. Ro-
berts, On the scalability of fair queueing, ACM
HotNets-III, San Diego, USA, November 2004

[8] A. Kortebi, L. Muscariello, S. Oueslati and J. Ro-
berts, Evaluating the Number of Active Flows in a
Schedular Realizing Fair Statistical Bandwidth Sha-
ring, Sigmetrics’05, Banff, Canada, June 2005.

[9] S. Keshav, Congestion Control in Computer Net-
works, PhD Thesis, published as UC Berkeley TR-
654, September 1991



