A network protocol for distributed orchestration
using intent-based forwarding

Jordan Augé
Cisco Systems
augjorda@cisco.com

Abstract—Network management systems have undergone
tremendous changes to adapt to the growing complexity and
diversity of network deployments. A new trend of intent-based
frameworks has emerged, where network administrators only
input an abstract view of their desired network model instead
of specifying the necessary steps to attain it. Intent-based net-
working holds the promise of autonomous, agile, and learning
networks that configure themselves according to abstract policy
without requiring human intervention.

In this demonstration, we introduce a novel architecture for
distributed intent-based network orchestration. For this purpose,
we first extend the standard YANG to carry intent rather than
configuration, adding missing features for in-network orches-
tration. Second, we use the model intents as network-native
objects on which to perform routing and forwarding in-between
orchestrators. Finally, we highlight the benefits of pushing intent
in the network rather than fully processing it in a centralized
orchestrator and illustrate potential improvements in term of
scalability, programmability, and reliability.

I. AN INTENT-BASED ORCHESTRATION PROTOCOL

Most intent-based management frameworks, such as Open-
Stack Heaﬂ or the Open-Networking Foundation Boulder
projecﬂ act as north-bound interfaces on top of a general-
purpose orchestrator. Their goal is then to translate intent into
orchestration actions (e.g., configuration files or command-line
instructions), which are then offloaded to other modules of
the orchestrator. While such centralized approaches represent
a first step towards intent-based networking, they suffer from
stark limitations. Mainly, they keep orchestration centralized,
which results not only in scalability issues (OpenStack, for
instance, has over 9M lines of code, and running a controller
requires at least 3 physical machines, each with 12 CPU cores
and 64GB of RAM) but also restricts the possibilities offered
by intent-based networking in terms of network automation
and innovation.

We argue that many limitations of current orchestrators
come from the necessity to perform an early and centralized
binding from the user’s request to a set of device configu-
rations, requiring full knowledge and preventing any further
actors to participate in the resolution of the intent. We thus
propose to push the intent deeper into the network fabric rather
than limiting it to the edge, which means both transporting and

Uhttps://wiki.openstack.org/Heat

Zhttps://www.opennetworking.org/incubator-projects/boulder/

3https://www.stratoscale.com/blog/openstack/openstack-hardware-
requirements-and-capacity-planning-servers-cpu-and-ram-part- 1/

Marcel Enguehard
Cisco Systems
mengueha@cisco.com

processing it in-between network elements or orchestrators.
Fortunately, the recently established consensus around network
management protocols such as NETCONF [1] and YANG (2]
brings an opportunity to realize such an architecture.

A. Intent-based network model

The first requirement towards distributed orchestration is to
have all involved entities — users, orchestrators and resources
— agree on a representation model for intent. The work around
the YANG data model and its widespread adoption provide a
major step in that direction, as it is extensible and allows de-
coupling the model structure from its semantic aspects. Despite
sharing some similarities with object-oriented programming
or relational databases, YANG does not include all of their
features and thus lacks some expressiveness for encoding
user intent or exposing relations and constraints within or in-
between resources. To that end, we enhance the model with
abstraction, foreign models, and scheduling information, as
done in the aforementioned research communities.
Abstraction: Like [3l], we propose to extend YANG with
abstract objects by proposing standard models for abstract
services (e.g., DNS server, node, or relational database) and
resource inheritance through the extends keyword. This
brings two advantages: it unifies both configuration and intent
models, simplifying the translation process, and enable late
resource specialization (e.g., from node to Linux Container or
Xen VM) in subsequent orchestrators or even at end-devices.
Foreign models: As such, YANG models only describe per-
device configuration, which prevents, for instance, device-to-
device cooperation to offload part of the scheduling from the
orchestrator. We thus propose to introduce in YANG models
the notion of abstract foreign objects. For instance, a DNS
server can be made aware of the existence of a new node
for which it must record a domain name and retrieve the
assigned IP address directly from the device on which the
node is deployed instead of relying on the orchestrator.
Scheduling information: Foreign requirements are not
enough on their own to enable efficient device-to-device
cooperation. Indeed, it still presents a flat temporal model
while certain services are ordered (some services require
others to be completed before them, e.g., a domain-name
registration comes after IP address assignment). We thus
enrich YANG groupings to distinguish parallel and
sequential groupings.

https://wiki.openstack.org/Heat
https://www.opennetworking.org/incubator-projects/boulder/
https://www.stratoscale.com/blog/openstack/openstack-hardware-requirements-and-capacity-planning-servers-cpu-and-ram-part-1/
https://www.stratoscale.com/blog/openstack/openstack-hardware-requirements-and-capacity-planning-servers-cpu-and-ram-part-1/

B. Model-based routing and forwarding

In a second step, we propose to depart from the traditional
star deployment where all resources are reachable from a
single orchestrator, to a more distributed approach where
resources attached to different orchestrators advertise their
capabilities throughout the network and allow users’ intents
to be routed back to those able to best satisfy the request.
This essentially means building a routing and forwarding
plane and more specifically as they are built in Information-
Centric Networking (ICN, e.g. NDN [4]). Like the former,
our proposal uses location-independent identifiers but these
are multidimensional structures representative of the intent
itself rather than one-dimensional names. Each orchestrator
now becomes a router and is in addition able to split (com-
position) or transform the incoming request (specialization,
attribute binding), which gets fully resolved upon reaching end
devices of interest. This approach replaces the point-to-point
transport of NETCONF by a multipoint-to-multipoint network
propagation.

The design of our intent router closely follows the structure
of an ICN router [4], where the three main data structures have
been adapted to our new addressing scheme: the Forwarding
Information Base (FIB), used to match incoming intent re-
quests to network locations, the Pending Intent Table (PIT),
that keeps state to symmetrically route answers back to the
origin of the corresponding intent, and a Content Store (CS)
that can be used to cache answers.

The FIB is the main component of our router. It maps
received resource advertisements to their ingress interface and
uses this information to forward an intent to one or several next
hops able to further satisfy it. This happens after an eventual
local processing where the intent can be (partially) bound,
specialized, or decomposed into multiple sub-intents using
the network model. To perform the matching process over
multi-dimensional intent objects, we developed a preliminary
solution based on maximal subset matching algorithm [3].

Like ICN, we store incoming requests into the PIT along
with their ingress interface and associated outgoing sub-
requests. The PIT thus collects all the necessary informa-
tion to send the corresponding answers back up to their
origin, thereby implementing symmetric routing. It serves as
a distributed scheduling module, keeping track of requests in
progress and allowing hop-by-hop reconciliation of concurrent
messages. The PIT is thus crucial to ensure the synchro-
nization and consistency of the execution in a multipoint-
to-multipoint concurrent environment. Furthermore, the PIT
contributes to the scalability of the system by aggregating
redundant requests and execute them only once.

The CS caches responses flowing back through the router,
and stores the current state of a network model deployment
for improved performance. It can be used to access such
information with lower RTT and network overhead. It also
brings resiliency as the network can still at least partially
operate during disconnection periods.

Intent is matched against device capacities advertisements
Web . to expand composed intents
e
app? O w 2aS
) ‘\ QO
— \ — — |~ . WebNode
1 ‘0 ~ .

vice

5. WepsSer

Knowledge of the foreign models allows
for decentralized device cooperation

MongoDB is matched as an
implementation of NoSQLDB

Fig. 1. Demonstration use case

II. DEMONSTRATION

We demonstrate the feasibility of our Intent-based Forward-
ing Architecture by implementing it in the VICN orchestra-
tor [6]. It is an intent-based orchestrator for ICN networks,
designed to address the lack of adequation between existing
IP-based tools with the requirements of the community.

As an example, we consider a client provisioning a web ap-
plication (WebApp) composed of a front-end (WebService)
and a NoSQL back-end (NoSQLDB). The user has a single
point of contact F' that can provide such functionality (for
convenience of use, billing, etc.), only requiring a unique name
that will be used to construct and manage the DNS entry
of the service. Database service is ensured by a specialized
Platform-as-a-Service (PaaS) advertising a NoSQL service,
while the hosting platform for the web application is managed
as Infrastructure-as-a-Service (IaaS) and provides containers to
its users. F’ federates and integrates the other platforms to offer
a consistent service to its user while hiding the implementation
details. The corresponding deployment is depicted in Figure [I]

First, we illustrate how our orchestration protocols allow for
distributed intent resolution. Indeed, as the intent propagates
through the first router, the WebApp is decomposed in its
Database service and its front end using the model. The
inheritance model is then used to match the NoSQL service
to the MongoDB capacities of the PaaS in the router FIB.
The characteristics of that service (e.g., [P address, identifiers,
etc.) can then be used to update the WebService intent with
the necessary information. Similarly, at the next orchestration
router, the WebService is divided into WebNode, which is a
containerized HTTP server, and DNSEnt ry, which maps this
server’s IP address to a domain name for public access. In both
cases, our protocol allows resolving intent on-demand in the
network in a distributed fashion. This simplifies orchestrator
design and frees it from being all-knowledgeable.

REFERENCES

[1] R. Enns, et al. “Network Configuration Protocol (NETCONF).” RFC
6241, Jun 2011. URL https://rfc-editor.org/rfc/rfc6241.txt.

[2] M. Bjorklund. “The YANG 1.1 Data Modeling Language.” RFC 7950,
Aug 2016. URL https://rfc-editor.org/rfc/rfc7950.txt.

[3] S. Kuryla, et al. “Extending YANG with Language Abstractions.” RFC
6095, Mar 2011. URL https://rfc-editor.org/rfc/rfc6095.txt.

[4] L. Zhang, et al. “Named data networking.” ACM SIGCOMM CCR, 2014.

[5] N. Alon and R. Yuster. “Fast algorithms for maximum subset matching
and all-pairs shortest paths in graphs with a (not so) small vertex cover.”
In European Symposium on Algorithms, Springer, 2007.

[6] M. Sardara, et al. “Virtualized ICN (VICN): towards a unified network
virtualization framework for ICN experimentation.” In ACM ICN’17.

https://rfc-editor.org/rfc/rfc6241.txt
https://rfc-editor.org/rfc/rfc7950.txt
https://rfc-editor.org/rfc/rfc6095.txt

	An intent-based orchestration protocol
	Intent-based network model
	Model-based routing and forwarding

	Demonstration
	References

