A Statistical Bandwith Sharing Perspective on Buffer Sizing

Jordan Augé (joint work with James Roberts in Orange Labs)

December 4th, 2008, LIP6, Paris

Buffer sizing issue

- The *Bandwidth Delay Product* dimensioning rule is not appropriate for high speed links
 - Buffer \sim link rate x RTT
 - ▶ eq. 2.5Gb for 10Gb/s links (RTT=250ms)

Buffer sizing issue

- The *Bandwidth Delay Product* dimensioning rule is not appropriate for high speed links
 - Buffer \sim link rate x RTT
 - ▶ eq. 2.5Gb for 10Gb/s links (RTT=250ms)
- Buffer size could be reduced if we assume a large number of flows, or paced TCP flows
 - Appenzeler et al. : Buffer $\sim 1/\sqrt{\text{number of flows}}$
 - \blacktriangleright Raina and Wishik : Buffer \sim 20 packets

Buffer sizing issue

- The *Bandwidth Delay Product* dimensioning rule is not appropriate for high speed links
 - $\blacktriangleright \text{ Buffer} \sim \text{link rate x RTT}$
 - ▶ eq. 2.5Gb for 10Gb/s links (RTT=250ms)
- Buffer size could be reduced if we assume a large number of flows, or paced TCP flows
 - Appenzeler et al. : Buffer $\sim 1/\sqrt{\text{number of flows}}$
 - \blacktriangleright Raina and Wishik : Buffer \sim 20 packets
- But these assumptions are unrealistic

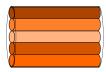
Traffic characteristics at flow level

- Finite size flow arrivals according to a stochastic process
- The number of flows in progress is a random value

Traffic characteristics at flow level

- Finite size flow arrivals according to a stochastic process
- The number of flows in progress is a random value
- The flow peak rate is an essential characteristic and determines a typical traffic mix
 - ▶ Most flows have a peak rate much less than the link rate
 - A small number of flows have a high peak rate and dynamically share link bandwidth

Link utilization regimes


a transparent regime

the sum of the peak rates of the flows is less than capacity with high probability

Link utilization regimes

a transparent regime

the sum of the peak rates of the flows is less than capacity with high probability

an elastic regime

all the competing flows share the link bandwidth

Link utilization regimes

a transparent regime

the sum of the peak rates of the flows is less than capacity with high probability

an elastic regime

all the competing flows share the link bandwidth

a intermediate elastic regime

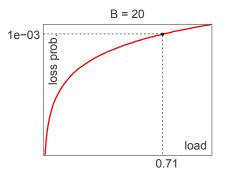
the majority of flows are peak rate limited but share the bandwidth with flows using all the residual bandwidth

Buffer sizing in the transparent regime

• Packets arrivals are locally Poisson

Buffer sizing in the transparent regime

• Packets arrivals are locally Poisson


- M/G/1 or even M/M/1 approximation is a useful guideline
- Buffer size B, approximate packet loss probability is $\epsilon = \rho^B$

Buffer sizing in the transparent regime

• Packets arrivals are locally Poisson

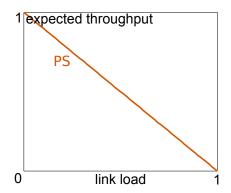
- M/G/1 or even M/M/1 approximation is a useful guideline
- Buffer size B, approximate packet loss probability is $\epsilon = \rho^B$

Buffer sizing in the elastic regime

- Processor sharing model illustrates flow performance
 - Poisson flow arrivals
 - Perfect fair sharing

Buffer sizing in the elastic regime

- Processor sharing model illustrates flow performance
 - Poisson flow arrivals
 - Perfect fair sharing
- The number of flows has a geometric distribution (M/M/1)
- Most of the time, only 1 or 2 flows : BDP necessary for standard TCP
- normalized expected flow throughput is a convenient performance indicator


$$= \frac{C}{E[\# \text{flows}]} = (1 - \rho)$$

Buffer sizing in the elastic regime

- Processor sharing model illustrates flow performance
 - Poisson flow arrivals
 - Perfect fair sharing
- The number of flows has a geometric distribution (M/M/1)
- Most of the time, only 1 or 2 flows : BDP necessary for standard TCP
- normalized expected flow throughput is a convenient performance indicator

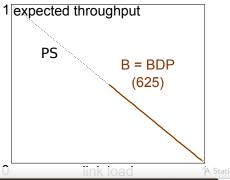
$$=rac{C}{E[\# ext{flows}]}=(1-
ho)$$

A Statistical Bandwith Sharing Perspective on Buffer Sizing

• Flows with small peak rates behave as a background traffic

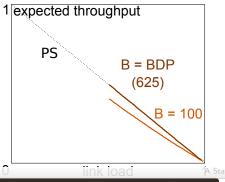
A	_
/ <mark>8</mark>	-
ði	-
0	
┉━━━━━	Ξ,

- Flows with small peak rates behave as a background traffic
- TCP does not fully utilizes available bandwidth


~			
/8			_
18			
Ŏ.			
	_		
		_	
이 그는 것을 가슴을 가슴을 가슴을 가슴을 가슴을 가슴을 가슴을 가슴을 가슴을 가슴		_	
1			_

- Flows with small peak rates behave as a background traffic
- TCP does not fully utilizes available bandwidth
- $\phi(N)$ equals utilization of residual bandwidth realized by N TCP

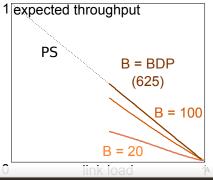
- Flows with small peak rates behave as a background traffic
- TCP does not fully utilizes available bandwidth
- $\phi(N)$ equals utilization of residual bandwidth realized by N TCP
- Evaluation of $\phi(N)$ values with simulations flows



• background load = 50%

Statistical Bandwith Sharing Perspective on Buffer Sizing

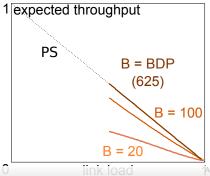
- Flows with small peak rates behave as a background traffic
- TCP does not fully utilizes available bandwidth
- $\phi(N)$ equals utilization of residual bandwidth realized by N TCP
- Evaluation of $\phi(N)$ values with simulations flows



• background load = 50%

Statistical Bandwith Sharing Perspective on Buffer Sizing

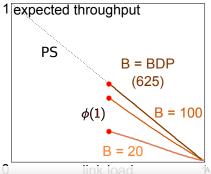
- Flows with small peak rates behave as a background traffic
- TCP does not fully utilizes available bandwidth
- $\phi(N)$ equals utilization of residual bandwidth realized by N TCP
- Evaluation of $\phi(N)$ values with simulations flows



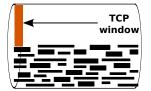
• background load = 50%

Statistical Bandwith Sharing Perspective on Buffer Sizing

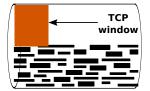
- Flows with small peak rates behave as a background traffic
- TCP does not fully utilizes available bandwidth
- $\phi(N)$ equals utilization of residual bandwidth realized by N TCP
- Evaluation of $\phi(N)$ values with simulations flows



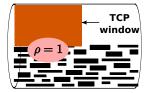
- background load = 50%
- performance decreases with higher background load or higher link capacity


7 / 12

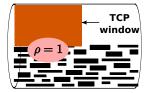
- Flows with small peak rates behave as a background traffic
- TCP does not fully utilizes available bandwidth
- $\phi(N)$ equals utilization of residual bandwidth realized by N TCP
- Evaluation of $\phi(N)$ values with simulations flows


- background load = 50%
- performance decreases with higher background load or higher link capacity
- linear decrease of throughput conditioned by $\phi(1)$

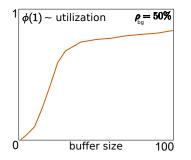

• TCP packet emissions are controlled by the congestion window


• TCP packet emissions are controlled by the congestion window

• TCP packet emissions are controlled by the congestion window

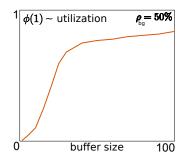


• TCP packet emissions are controlled by the congestion window



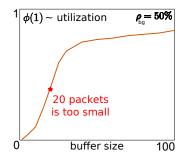
- TCP packet emissions are controlled by the congestion window
- Load is close to 1 during windows emissions
- Unstable behaviour of the queue which fills up, leading to a packet loss and halving of TCP window

A Statistical Bandwith Sharing Perspective on Buffer Sizing



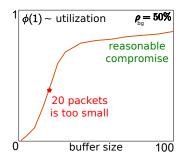
- TCP packet emissions are controlled by the congestion window
- Load is close to 1 during windows emissions
- Unstable behaviour of the queue which fills up, leading to a packet loss and halving of TCP window
- Large buffers are necessary to avoid the impact of the background traffic

• fixed background load



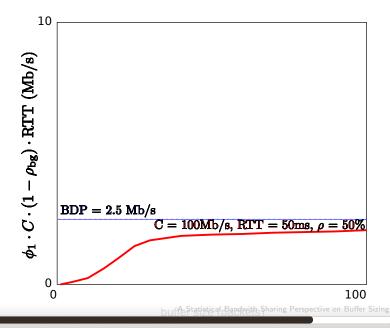
- fixed background load
- Two behaviors for $\phi(1)$ according to buffer size
 - ▶ for small buffer sizes, low values of φ(1)

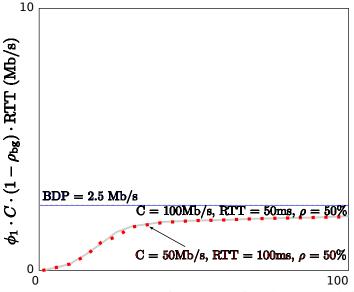
9 / 12


 for higher buffer sizes, φ(1) tend to 100%, reached for the BDP

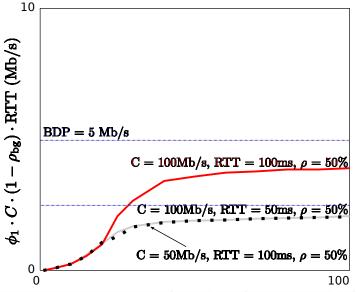
- fixed background load
- Two behaviors for $\phi(1)$ according to buffer size
 - ▶ for small buffer sizes, low values of φ(1)

9 / 12

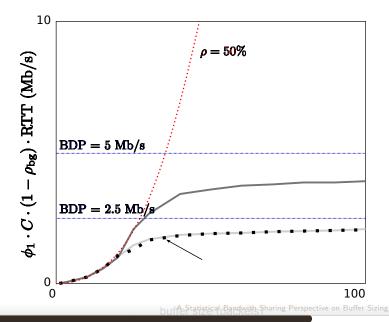

 for higher buffer sizes, φ(1) tend to 100%, reached for the BDP

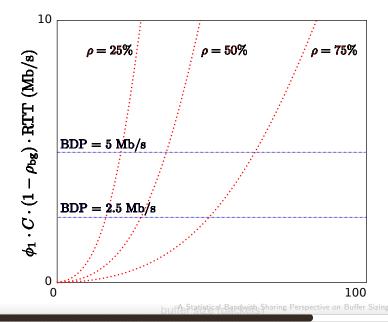


- fixed background load
- Two behaviors for $\phi(1)$ according to buffer size
 - ▶ for small buffer sizes, low values of φ(1)


9 / 12

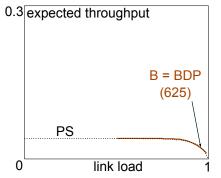
- for higher buffer sizes, φ(1) tend to 100%, reached for the BDP
- buffers should be sized to avoid the low utilization zone




A Statistical Bandwith Sharing Perspective on Buffer Sizing

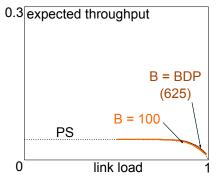
Empirical buffer sizing (2/2)

Empirical buffer sizing (2/2)


- Several flows are needed to saturate the link
- We are in a transparent regime up to high loads

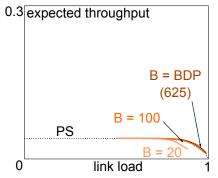
A Statistical Bandwith Sharing Perspective on Buffer Sizing

- Several flows are needed to saturate the link
- We are in a transparent regime up to high loads



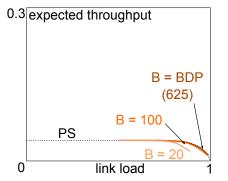
A Statistical Bandwith Sharing Perspective on Buffer Sizing

- Several flows are needed to saturate the link
- We are in a transparent regime up to high loads



A Statistical Bandwith Sharing Perspective on Buffer Sizing

- Several flows are needed to saturate the link
- We are in a transparent regime up to high loads



A Statistical Bandwith Sharing Perspective on Buffer Sizing

- Several flows are needed to saturate the link
- We are in a transparent regime up to high loads

• Small buffers are sufficient up to high loads

A Statistical Bandwith Sharing Perspective on Buffer Sizing

- Relation between buffer size and realized performance clearly depends on assumed traffic characteristics
- The most significant is the mix of flow peak rates

A Statistical Bandwith Sharing Perspective on Buffer Sizing

- Relation between buffer size and realized performance clearly depends on assumed traffic characteristics
- The most significant is the mix of flow peak rates
- 20 packet suffice in transparent regime...

- Relation between buffer size and realized performance clearly depends on assumed traffic characteristics
- The most significant is the mix of flow peak rates
- 20 packet suffice in transparent regime...
- ...but are too few for high peak rate flows

- Relation between buffer size and realized performance clearly depends on assumed traffic characteristics
- The most significant is the mix of flow peak rates
- 20 packet suffice in transparent regime...
- ...but are too few for high peak rate flows
- Though the BDP is not necessary

- Relation between buffer size and realized performance clearly depends on assumed traffic characteristics
- The most significant is the mix of flow peak rates
- 20 packet suffice in transparent regime...
- ...but are too few for high peak rate flows
- Though the BDP is not necessary
- We proposed an empirical buffer sizing guideline depending on background load

- Relation between buffer size and realized performance clearly depends on assumed traffic characteristics
- The most significant is the mix of flow peak rates
- 20 packet suffice in transparent regime...
- ...but are too few for high peak rate flows
- Though the BDP is not necessary
- We proposed an empirical buffer sizing guideline depending on background load

Thanks ! Questions are welcome. Contact : Jordan Augé <jordan.auge@free.fr>

A Statistical Bandwith Sharing Perspective on Buffer Sizing