A brief introduction to Flow-Aware Networking

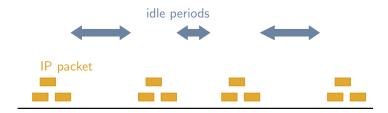
Jordan Augé <jordan.auge@cl.cam.ac.uk>

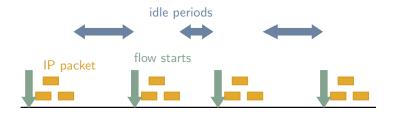
NETOS talklets - April 22nd, 2008

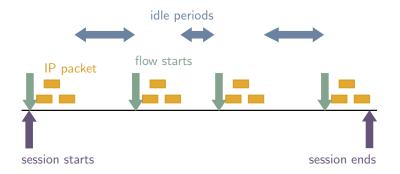
Introduction

- Overview related to work I have done during my PhD
- Flow-Aware Networking is a concept proposed by James Roberts, my advisor
- **Motivation**: inefficiency and complexity of standardized QoS architectures...
- ... because traffic is hard to characterize (e.g. failure of token bucket)
- **Objective**: define a simple and robust architecture to provide QoS (initially in the backbone)

Introduction


- Overview related to work I have done during my PhD
- Flow-Aware Networking is a concept proposed by James Roberts, my advisor
- **Motivation**: inefficiency and complexity of standardized QoS architectures...
- ... because traffic is hard to characterize (e.g. failure of token bucket)
- **Objective**: define a simple and robust architecture to provide QoS (initially in the backbone)





A brief introduction to Flow-Aware Networking

A brief introduction to Flow-Aware Networking

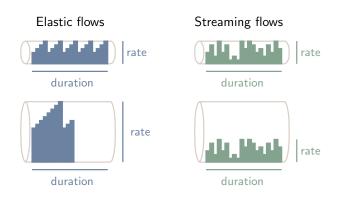
Example of flow in IPv4: (src/dst IPs, src/dst ports, protocol) + timeout

- Finite size flow arrivals, according to a stochastic process,
- #flows varies: significant characteristic = average link load
- The flow peak rate defines :
 - bottlenecked flows: peak rate limited flows: the link only "sees" a packet from time to time
 - non-bottlenecked flows: usually high exogeneous rate, share bandwidth thanks to protocols like TCP
- The vast majority of flows are *bottlenecked*...

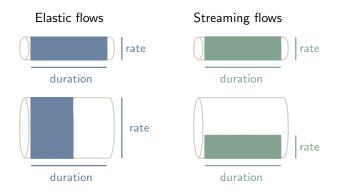
- Example of flow in IPv4: (src/dst IPs, src/dst ports, protocol) + timeout
- Finite size flow arrivals, according to a stochastic process,
- #flows varies: significant characteristic = average link load
- The flow peak rate defines :
 - bottlenecked flows: peak rate limited flows: the link only "sees" a packet from time to time
 - non-bottlenecked flows: usually high exogeneous rate, share bandwidth thanks to protocols like TCP
- The vast majority of flows are *bottlenecked*...

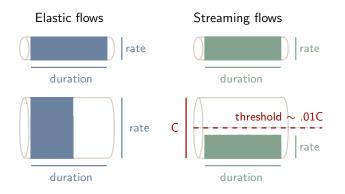
- Example of flow in IPv4: (src/dst IPs, src/dst ports, protocol) + timeout
- Finite size flow arrivals, according to a stochastic process,
- #flows varies: significant characteristic = average link load
- The flow peak rate defines :
 - bottlenecked flows: peak rate limited flows: the link only "sees" a packet from time to time
 - non-bottlenecked flows: usually high exogeneous rate, share bandwidth thanks to protocols like TCP
- The vast majority of flows are *bottlenecked*...

- Example of flow in IPv4: (src/dst IPs, src/dst ports, protocol) + timeout
- Finite size flow arrivals, according to a stochastic process,
- #flows varies: significant characteristic = average link load
- The flow peak rate defines :
 - bottlenecked flows: peak rate limited flows: the link only "sees" a packet from time to time
 - non-bottlenecked flows: usually high exogeneous rate, share bandwidth thanks to protocols like TCP
- The vast majority of flows are *bottlenecked*...

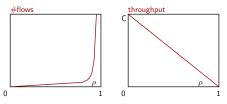

- Example of flow in IPv4: (src/dst IPs, src/dst ports, protocol) + timeout
- Finite size flow arrivals, according to a stochastic process,
- #flows varies: significant characteristic = average link load
- The flow peak rate defines :
 - bottlenecked flows: peak rate limited flows: the link only "sees" a packet from time to time
 - non-bottlenecked flows: usually high exogeneous rate, share bandwidth thanks to protocols like TCP
- The vast majority of flows are *bottlenecked*...

- Example of flow in IPv4: (src/dst IPs, src/dst ports, protocol) + timeout
- Finite size flow arrivals, according to a stochastic process,
- #flows varies: significant characteristic = average link load
- The flow peak rate defines :
 - bottlenecked flows: peak rate limited flows: the link only "sees" a packet from time to time
 - non-bottlenecked flows: usually high exogeneous rate, share bandwidth thanks to protocols like TCP
- The vast majority of flows are *bottlenecked*...


- Example of flow in IPv4: (src/dst IPs, src/dst ports, protocol) + timeout
- Finite size flow arrivals, according to a stochastic process,
- #flows varies: significant characteristic = average link load
- The flow peak rate defines :
 - bottlenecked flows: peak rate limited flows: the link only "sees" a packet from time to time
 - non-bottlenecked flows: usually high exogeneous rate, share bandwidth thanks to protocols like TCP
- The vast majority of flows are *bottlenecked*...

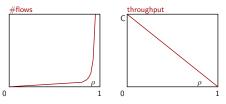


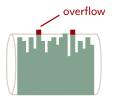
A brief introduction to Flow-Aware Networking


A brief introduction to Flow-Aware Networking

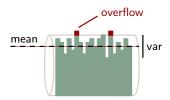
A brief introduction to Flow-Aware Networking

Elastic (Statistical Bandwidth Sharing)

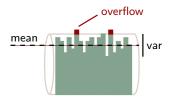

- Processor Sharing (PS) models : M/M/1/PS queue
- Good approximation of TCP performance
- Insensitivity to flow distributions
 - \blacktriangleright only depends on the load ($\rho=$ arrival rate \times size / C)
 - E[flows in progress] = $\frac{\rho}{1-\rho}$
 - E[throughput] = $C \cdot (1 \rho)$

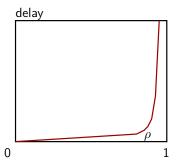

- Small number of flows in normal load but...
- ... in practice ho < 0.5 and E[flows in progress] = O(10⁴)
- Most of the flows are bottlenecked : limited by their access link for example

Elastic (Statistical Bandwidth Sharing)

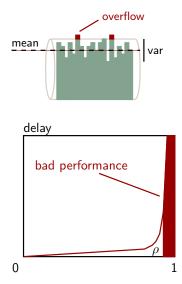

- Processor Sharing (PS) models : M/M/1/PS queue
- Good approximation of TCP performance
- Insensitivity to flow distributions
 - only depends on the load ($\rho = arrival rate \times size / C$)
 - E[flows in progress] = $\frac{\rho}{1-\rho}$
 - E[throughput] = $C \cdot (1 \rho)$

- Small number of flows in normal load but...
- ... in practice ho < 0.5 and E[flows in progress] = O(10⁴)
- Most of the flows are bottlenecked : limited by their access link for example

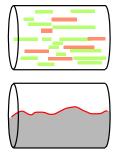



- Controlled performance
 ≡ P[input rate < C] ≤ ε

- Ensure transparent regime for streaming flows
- Performance is insensitive to detailed traffic characteristics
- Locally Poisson arrivals : M/M/1 good approx.
- ex. P[>83 pk] = 10^{-4}] for ρ = 90%, that is \sim 1ms with 1Gb/s
- Little scope for differentiation (cf Diffserv)


- Controlled performance
 ≡ P[input rate < C] ≤ ε

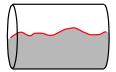
- Ensure transparent regime for streaming flows
- Performance is insensitive to detailed traffic characteristics
- Locally Poisson arrivals : M/M/1 good approx.
- ex. P[>83 pk] = $10^{-4}]$ for $\rho =$ 90%, that is \sim 1ms with 1Gb/s
- Little scope for differentiation (cf Diffserv)


- Controlled performance
 ≡ P[input rate < C] ≤ ε

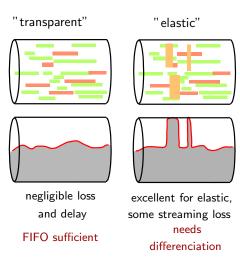
- Ensure transparent regime for streaming flows
- Performance is insensitive to detailed traffic characteristics
- Locally Poisson arrivals : M/M/1 good approx.
- ex. P[>83 pk] = 10^{-4}] for $\rho = 90\%$, that is ~ 1 ms with 1Gb/s
- Little scope for differentiation (cf Diffserv)

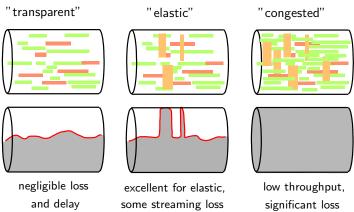
- Controlled performance
 ≡ P[input rate < C] ≤ ε

- Ensure transparent regime for streaming flows
- Performance is insensitive to detailed traffic characteristics
- Locally Poisson arrivals : M/M/1 good approx.
- ex. P[>83 pk] = 10^{-4}] for $\rho =$ 90%, that is \sim 1ms with 1Gb/s
- Little scope for differentiation (cf Diffserv)


A brief introduction to Flow-Aware Networking

A brief introduction to Flow-Aware Networking

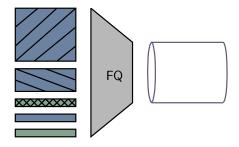

"transparent"



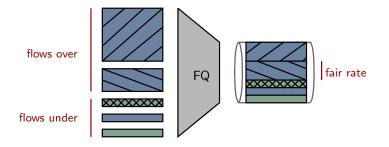
negligible loss and delay

FIFO sufficient

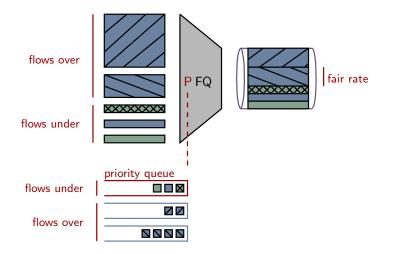
A brief introduction to Flow-Aware Networking

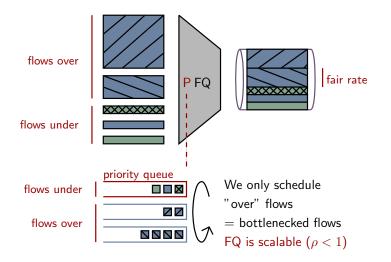


FIFO sufficient


needs differenciation

needs


overload control

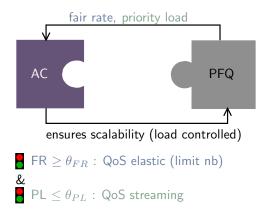

A brief introduction to Flow-Aware Networking

A brief introduction to Flow-Aware Networking

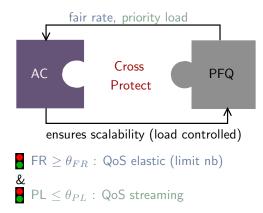
A brief introduction to Flow-Aware Networking

A brief introduction to Flow-Aware Networking

A brief introduction to Flow-Aware Networking


FR $\geq \theta_{FR}$: QoS elastic (limit nb)

A brief introduction to Flow-Aware Networking



FR $\geq \theta_{FR}$: QoS elastic (limit nb) PL $\leq \theta_{PL}$: QoS streaming

A brief introduction to Flow-Aware Networking

A brief introduction to Flow-Aware Networking

A brief introduction to Flow-Aware Networking

Some work in the FAN context (PhD)

- Simulation (NS-2) and GNU/Linux testbed (XP as a kernel module)
- Some results on a real traffic trace (France Telecom backbone)
- Investigations on the buffer sizing issue for IP routers
- Fair Queueing and TCP performance
- Proposition of a more efficient admission control algorithm for streaming flows
- Thoughts on adapting Cross-Protect for optical networks
- Proposition to introduce Flow-Aware Networking in the access network (Self-Protect) + testbed

Conclusion

- Need to account for the real nature of traffic
- Flow level modelling is efficient
- Important characteristics : load, flow peak rate
- Cross-Protect = Admission Control + Fair Queueing