A brief introduction to Flow-Aware
Networking

Jordan Augé <jordan.auge@cl.cam.ac.uk>

NETOS talklets - April 22nd, 2008

[UNIVERSITY OF
mﬂm CAMBRIDGE

1/12

Introduction

e Overview related to work | have done during my PhD

e Flow-Aware Networking is a concept proposed by James
Roberts, my advisor

/ 12

Introduction

e Overview related to work | have done during my PhD

e Flow-Aware Networking is a concept proposed by James
Roberts, my advisor

e Motivation: inefficiency and complexity of standardized QoS
architectures...

e ... because traffic is hard to characterize (e.g. failure of token
bucket)

e Objective: define a simple and robust architecture to provide
QoS (initially in the backbone)

2 /12

Observing traffic at different scales

/ 12

Observing traffic at different scales

IP packet
| | |
N . I N

3/12

Observing traffic at different scales

idle periods
) =) <)
IP packet
| | | |
I I I I

3/12

Observing traffic at different scales

idle periods
) =) <)

IP packet flow starts

O B S A

3/12

Observing traffic at different scales

idle periods
) =) <)

IP packet flow starts

S S E 5
i i

session starts session ends

3/12

Flow structure of traffic

e Example of flow in IPv4:
(src/dst IPs, src/dst ports, protocol) + timeout

/ 12

Flow structure of traffic

e Example of flow in IPv4:
(src/dst IPs, src/dst ports, protocol) + timeout

e Finite size flow arrivals, according to a stochastic process,

/ 12

Flow structure of traffic

e Example of flow in IPv4:
(src/dst IPs, src/dst ports, protocol) + timeout

e Finite size flow arrivals, according to a stochastic process,

e F#flows varies: significant characteristic = average link load

LU 4/12

Flow structure of traffic

e Example of flow in IPv4:
(src/dst IPs, src/dst ports, protocol) + timeout

Finite size flow arrivals, according to a stochastic process,

#flows varies: significant characteristic = average link load
The flow peak rate defines :

LU 4/12

Flow structure of traffic

e Example of flow in IPv4:
(src/dst IPs, src/dst ports, protocol) + timeout

Finite size flow arrivals, according to a stochastic process,

#flows varies: significant characteristic = average link load

The flow peak rate defines :

» bottlenecked flows: peak rate limited flows: the link only
“sees” a packet from time to time

LU 4/12

Flow structure of traffic

e Example of flow in IPv4:
(src/dst IPs, src/dst ports, protocol) + timeout

Finite size flow arrivals, according to a stochastic process,

#flows varies: significant characteristic = average link load

The flow peak rate defines :
» bottlenecked flows: peak rate limited flows: the link only
“sees” a packet from time to time
» non-bottlenecked flows: usually high exogeneous rate, share
bandwidth thanks to protocols like TCP

4/12

Flow structure of traffic

e Example of flow in IPv4:
(src/dst IPs, src/dst ports, protocol) + timeout

Finite size flow arrivals, according to a stochastic process,

#flows varies: significant characteristic = average link load

The flow peak rate defines :
» bottlenecked flows: peak rate limited flows: the link only
“sees” a packet from time to time
» non-bottlenecked flows: usually high exogeneous rate, share
bandwidth thanks to protocols like TCP

The vast majority of flows are bottlenecked...

LU 4/12

Characterization of traffic: flows as boxes

Elastic flows Streaming flows
duration duration

5/12

Characterization of traffic: flows as boxes

Elastic flows Streaming flows
duration duration
rate

Al lhalh |

duration duration

5/12

Characterization of traffic: flows as boxes

Elastic flows Streaming flows
duration duration
rate

duration duration

G 5/12

Characterization of traffic: flows as boxes

Elastic flows Streaming flows
duration duration

threshold ~ .01C

duration duration

G 5/12

Elastic (Statistical Bandwidth Sharing)

e Processor Sharing (PS) models : M/M/1/PS queue
e Good approximation of TCP performance
e Insensitivity to flow distributions

» only depends on the load (p = arrival rate x size / C)

» E[flows in progress] = ﬁ
» E[throughput] = C - (1 — p)
#flows throughput
c
L P
0 1 0 1

O R YRR NN AR R RS SRR AR NN RREE AR RNEY KRR 6 /12

Elastic (Statistical Bandwidth Sharing)

e Processor Sharing (PS) models : M/M/1/PS queue
e Good approximation of TCP performance
e Insensitivity to flow distributions
» only depends on the load (p = arrival rate x size / C)
> E[flows in progress| = -
» E[throughput] = C - (1 — p)

F#flows throughput
C

p p
0 1 0 1

e Small number of flows in normal load but...

e ... in practice p < 0.5 and E[flows in progress] = O(10%)

e Most of the flows are bottlenecked : limited by their access
link for example

O R YRR NN AR R RS SRR AR NN RREE AR RNEY KRR 6 /12

Streaming (Bufferless Statistical Multiplexing)

overflow e Controlled performance
- = Plinput rate < C] < ¢
e Ensure transparent regime for
streaming flows

o Performance is insensitive to
detailed traffic characteristics

7/12

Streaming (Bufferless Statistical Multiplexing)

overflow e Controlled performance
- = Plinput rate < C] < ¢

var e Ensure transparent regime for
streaming flows

o Performance is insensitive to
detailed traffic characteristics

e Locally Poisson arrivals : M/M/1
good approx.

e ex. P[>83 pk] = 1074 for
p = 90%, that is ~ 1ms with
1Gb/s

o Little scope for differentiation (cf
Diffserv)

CIEEEEINEEENIEEEEE NI NN NI NN 7/12

Streaming (Bufferless Statistical Multiplexing)

overflow

e

var

delay

Controlled performance

= P[input rate < C] < ¢
Ensure transparent regime for
streaming flows

Performance is insensitive to
detailed traffic characteristics

Locally Poisson arrivals : M/M/1
good approx.

ex. P[>83 pk] = 1074] for

p = 90%, that is ~ 1ms with
1Gb/s

Little scope for differentiation (cf
Diffserv)

7/12

Streaming (Bufferless Statistical Multiplexing)

e Controlled performance

= P[input rate < C] < ¢
- var e Ensure transparent regime for
streaming flows

overflow

e

o Performance is insensitive to
detailed traffic characteristics
delay

e Locally Poisson arrivals : M/M/1
good approx.

ex. P[>83 pk] = 1074] for

p = 90%, that is ~ 1ms with
1Gb/s

Little scope for differentiation (cf
Diffserv)

bad performance

7/12

Link utilization regimes

/ 12

Link utilization regimes

/ 12

Link utilization regimes

"transparent”

negligible loss

and delay
FIFO sufficient

/ 12

Link utilization regimes

"transparent” "elastic”

)

negligible loss excellent for elastic,
and delay some streaming loss
needs

FIFO sufficient . L
differenciation

/ 12

Link utilization regimes

"transparent”

"elastic”

" congested"”

)

negligible loss

and delay
FIFO sufficient

excellent for elastic,

some streaming loss

needs
differenciation

low throughput,
significant loss

needs
overload control

/ 12

Priority Fair Queueing

I
.

LT T LT 9/12

Priority Fair Queueing

flows over

FQ fair rate

flows under

LT T LT 9/12

Priority Fair Queueing

flows over

fair rate

flows under

priority queue
flows under | OERX

__ &g
____ SSSE|

flows over

LT T LT 9/12

Priority Fair Queueing

flows over

fair rate

flows under

priority queue
flows under | OOR We only schedule

"over" flows
7] 7]

= bottlenecked flows

j‘ FQ is scalable (p < 1)

flows over

9/12

Coupling PFQ with Flow Level Admission Control

.

. . ' ' ' ' ' ' ' [[[|} 10 / 12

Coupling PFQ with Flow Level Admission Control

fair rate, priority load

K &

. . ' ' ' ' ' ' ' [[[|} 10 / 12

Coupling PFQ with Flow Level Admission Control

fair rate, priority load

K &

I FR > 0rr : QoS elastic (limit nb)

. . ' ' ' ' ' ' ' [[[|} 10 / 12

Coupling PFQ with Flow Level Admission Control

fair rate, priority load

I FR > 0rr : QoS elastic (limit nb)

&
I PL < 0pr : QoS streaming

10 /12

Coupling PFQ with Flow Level Admission Control

fair rate, priority load

ensures scalability (load controlled)

I FR > 0rr : QoS elastic (limit nb)

&
I PL < 0pr : QoS streaming

10 /12

Coupling PFQ with Flow Level Admission Control

fair rate, priority load

Cross
Protect

ensures scalability (load controlled)

I FR > 0rr : QoS elastic (limit nb)

&
I PL < 0pr : QoS streaming

10 /12

Some work in the FAN context (PhD)

e Simulation (NS-2) and GNU/Linux testbed (XP as a kernel
module)

e Some results on a real traffic trace (France Telecom backbone)
e Investigations on the buffer sizing issue for IP routers
e Fair Queueing and TCP performance

e Proposition of a more efficient admission control algorithm for
streaming flows

e Thoughts on adapting Cross-Protect for optical networks

e Proposition to introduce Flow-Aware Networking in the access
network (Self-Protect) + testbed

— 11/ 12

Conclusion

Need to account for the real nature of traffic

Flow level modelling is efficient

Important characteristics : load, flow peak rate

Cross-Protect = Admission Control + Fair Queueing

NIRRT . 0

