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Introduction

e Overview related to work | have done during my PhD

e Flow-Aware Networking is a concept proposed by James
Roberts, my advisor
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Introduction

e Overview related to work | have done during my PhD

e Flow-Aware Networking is a concept proposed by James
Roberts, my advisor

e Motivation: inefficiency and complexity of standardized QoS
architectures...

e ... because traffic is hard to characterize (e.g. failure of token
bucket)

e Objective: define a simple and robust architecture to provide
QoS (initially in the backbone)
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Observing traffic at different scales
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Flow structure of traffic

e Example of flow in IPv4:
(src/dst IPs, src/dst ports, protocol) + timeout
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Flow structure of traffic

e Example of flow in IPv4:
(src/dst IPs, src/dst ports, protocol) + timeout

Finite size flow arrivals, according to a stochastic process,

#flows varies: significant characteristic = average link load

The flow peak rate defines :
» bottlenecked flows: peak rate limited flows: the link only
“sees” a packet from time to time
» non-bottlenecked flows: usually high exogeneous rate, share
bandwidth thanks to protocols like TCP

The vast majority of flows are bottlenecked...
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Characterization of traffic: flows as boxes

Elastic flows Streaming flows
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Elastic flows Streaming flows
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Elastic (Statistical Bandwidth Sharing)

e Processor Sharing (PS) models : M/M/1/PS queue
e Good approximation of TCP performance
e Insensitivity to flow distributions

» only depends on the load (p = arrival rate x size / C)

» E[flows in progress] = ﬁ
» E[throughput] = C - (1 — p)
#flows throughput
c
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Elastic (Statistical Bandwidth Sharing)

e Processor Sharing (PS) models : M/M/1/PS queue
e Good approximation of TCP performance
e Insensitivity to flow distributions
» only depends on the load (p = arrival rate x size / C)
> E[flows in progress| = -
» E[throughput] = C - (1 — p)

F#flows throughput
C

p p
0 1 0 1

e Small number of flows in normal load but...

e ... in practice p < 0.5 and E[flows in progress] = O(10%)

e Most of the flows are bottlenecked : limited by their access
link for example
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Streaming (Bufferless Statistical Multiplexing)

overflow e Controlled performance
- = Plinput rate < C] < ¢
e Ensure transparent regime for
streaming flows

o Performance is insensitive to
detailed traffic characteristics
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Streaming (Bufferless Statistical Multiplexing)

e Controlled performance

= P[input rate < C] < ¢
- var e Ensure transparent regime for
streaming flows

overflow

e

o Performance is insensitive to
detailed traffic characteristics
delay

e Locally Poisson arrivals : M/M/1
good approx.

ex. P[>83 pk] = 1074] for

p = 90%, that is ~ 1ms with
1Gb/s

Little scope for differentiation (cf
Diffserv)

bad performance
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Link utilization regimes
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negligible loss

and delay
FIFO sufficient

excellent for elastic,

some streaming loss

needs
differenciation

low throughput,
significant loss

needs
overload control
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Priority Fair Queueing

flows over

fair rate

flows under

priority queue
flows under | OOR We only schedule

"over" flows
7] 7]

= bottlenecked flows

j‘ FQ is scalable (p < 1)

flows over
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Coupling PFQ with Flow Level Admission Control
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Coupling PFQ with Flow Level Admission Control

fair rate, priority load

Cross
Protect

ensures scalability (load controlled)
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Some work in the FAN context (PhD)

e Simulation (NS-2) and GNU/Linux testbed (XP as a kernel
module)

e Some results on a real traffic trace (France Telecom backbone)
e Investigations on the buffer sizing issue for IP routers
e Fair Queueing and TCP performance

e Proposition of a more efficient admission control algorithm for
streaming flows

e Thoughts on adapting Cross-Protect for optical networks

e Proposition to introduce Flow-Aware Networking in the access
network (Self-Protect) + testbed
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Conclusion

Need to account for the real nature of traffic

Flow level modelling is efficient

Important characteristics : load, flow peak rate

Cross-Protect = Admission Control + Fair Queueing
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